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A P P E N D I X  

The  c o n s t r u c t i o n  of  the  5, 95-chart 

In  Fig. 5 there is shown a central section of the Ewald 
sphere passing through the relp P,  and containing the 

C" 
Fig. 5. Diagram showing the relation between the lengths 

PM =- R, PN-= R o, N M ' =  R" and NC---- G. 

rekha PQ. The angle c P Q  is denoted ½g--i, and if 
PQ cuts X in M we have, from triangle CPM,  

R~--2R(G-f-Ro) sin i+Ro(2G-f-Ro) = O . (4) 

Thus, being given i and Ro/G, the value of R can be 
calculated. R0 is taken for convenience in plotting as 
10 cm. 

The circle on the R-chart  corresponding to a given 
value of R has a radius R',  where 

R' = R cos ~. (5) 

Thus R '  corresponds to N M '  in Fig. 5, where M '  is 
the perpendicular projection of M on the tangent  
plane NF .  Within the required accuracy, M '  coincides 
with the projection of M from C on the tangent  plane 
NF .  To plot a point on the chart  corresponding to 
particular value of ~ and q5 we first calculate i and 
an auxiliary angle ~ (Fig. 2) from the relations 

sin i = sin ~ sin 95, [ 

! tan ~ = tan ~ cos 95. 
(6) 

The polar coordinates of the required point are thus 
R',  ~ and its Cartesian coordinates are R'  s in~ ,  
R'  cos ~. 
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The symmetry of real periodic functions is considered, taking into account reversal symmetry 
elements which relate one point to another where the function has the same magnitude but opposite 
sign. There are 46 reversal space groups in two dimensions, and 3 in one dimension, which contain 
one or more of such symmetry elements. The number in three dimensions is not yet known. 
Reversal space groups can be denoted by symbols analogous to those of the Hermann-Mauguin 
space-group notation. 

1. I n t r o d u c t i o n  

I t  is well known that  a periodic function which can 
be represented by a Fourier series 

f ( x ,  y, z) = ~Y, ~ ~Y, F(hkl) exp [ - -2zd(hx÷ky+lz)]  (1) 
h k l 

can be represented in projection on a plane perpen- 
dicular to the z direction by 

fo(X, y) = ~Y, ~Y, F(hkO) exp [--2zd(hxA-ky)] . (2) 
h k 

In  crystal-structure analysis, a number of investigators 
(Clews & Cochran, 1949; Dyer, 1951a, b; Raeuchle & 
Rundle, 1952) have made practical use of the properties 
of. a related two-dimensional function, 

fL (X, y) = ~ Z,  F(hkL) exp [--2zd(hx+ky)] . (3) 
h k 
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Cochran & Dyer (1952) have suggested that  functions 
such as (3) should be called generalized projections. 
In general the functions (1) and (2) are complex, 
although in crystallography, where they represent the 
electron density, they are entirely real and positive. 
Even in this case, however, fL usually consists of a 
real and an imaginary component, so that  fL = CL-t- iSL. 
The functions CL and SL are real, but not everywhere 
positive. 

All periodic functions must conform to the symmetry 
of one of the space groups, of which there are 230 in 
three dimensions, 17 in two dimensions, and 2 in one 
dimension. However, in order to describe fully the 
symmetry properties of periodic functions we require 
symmetry elements which are not taken into account 
in the formulation of the usual space groups. Crystallo- 
graphers have not paid any attention to this point in 
the past, because they have been dealing with sets 
of points, or with functions such as the electron 
density, which is everywhere real and positive and 
whose symmetry can therefore be fully described in 
terms of mirror planes, centres of symmetry, etc. 
In dealing with generalized projections, however, one 
realises that, for example, centres of anti-symmetry, 
about which the function satisfies the condition 
fL( x, Y) = --fL (X', Y) are equally important. The 
situation may be stated quite generally as follows. 
In the usual space groups, a symmetry operator J 
relates a point r of a periodic function f(r)  to a point 
r '  : r .  J such that  f(r) = f ( r . J ) .  What we shall call 
a reversal space group contains at least one corre- 
sponding reversal symmetry operator J - ,  defined by 
the relations r '  : r .  J -  and f(r) : - - f ( r .  J - ) .  Only a 
limited number of combinations of the operators J 
and J -  are consistent with periodicity. The writer has 
not attempted to enumerate the three-dimensional 
reversal space groups, but the number in two dimen- 

sions has been found to be 46, and in one dimension, 3. 
A notation is suggested which can be used to describe 
fully the symmetry of any real periodic two-dimensional 
function, and should be useful in describing generalized 
projections which occur in practical structure analysis. 

2. Addit ional  s y m m e t r y  e l ements  and point groups  
in a plane 

In addition to the symmetry operators 

1 2 3 4 6 m g (4) 

which occur in the usual two-dimensional space groups, 
we require the reversal symmetry operators 

2 - 4 -  6- m - g -  t - .  (5) 

The symbol 6-, for example, indicates that  rotation 
through an angle of 60 °, followed by a change of sign, 
brings the function into self-coincidence. Similarly g- 
denotes the action of a glide line g, followed by a 
change of sign, while t- denotes a translation of one 
half of the repeat distance in any direction, followed 
by a change of sign. The diagrammatic representation 
of the symmetry elements (5) is shown in Fig. 1. 
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2- 4.- 6- m- 
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. . . . . . . .  

Fig. 1. Graphical  representa t ion of the  s y m m e t r y  elements 
2 - , 4 - , 6 - , m  , g  and t - .  
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Fig. 2. The 11 reversal po in t  groups in a plane.  
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I t  is well known t h a t  certain of the elements (4) 
can be combined to  produce 10 poin t  groups in a plane 
(Table 1). The addi t ion  of appropr ia te  elements from 
(5) results in  the  appearance of 11 reversal  point  
groups in a plane. They  are listed in Table 2, and 
h a v e . a l r e a d y  been described by  Woods (1935a, b, c) 
as ' types  of counterchange po in t - symmet ry  in occurring 
pat terns ' .  

Table 1. P o i n t  groups  in  a p lane  

1 2 m 2 r a m  4 4 r a m  3 3 m  6 6 m m  

2- 

Table 2. Reversa l  po in t  groups  i n  a p lane  

m -  2 m  m 2 - r a m -  4-  4 - m m -  4m" m 

3 ~  6- 6 - m m -  6 m  m 

The reversal  point  groups of Table 2 are i l lus t ra ted 
in Fig. 2. The dark  and  open circles are related to one 
another  as posit ive and negative.  

3. R e v e r s a l  s p a c e  ~ , roups  i n  t w o  d i m e n s i o n s  

By systemat ic  replacement  of the  elements (4) by  the  
corresponding elements of (5), and the  addi t ion  of 
elements  t -  to  the  usual two-dimensional  space groups, 
as well as to  those containing one or more of the  corre- 
sponding reversal  symmet ry  elements, the  existence of 
46 reversal  space groups in two dimensions, in the  
sense of our definit ion, can be demonstra ted.  These 
space groups are listed in Table 3, and are described 
by  symbols analogous to the Hermann-Maugu in  
symbols for the  usual space groups. The meaning of 
the  separate symbols such as m-  and  g- has a l ready 
been defined. They  are given their  cus tomary posi t ional  
values, in t h a t  the  first posit ion after the  lat t ice 
symbol,  or after an axis when one is given, represents 
a symmet ry  line perpendicular  to  the  x direction, 
while the  significance of t h a t  in the  second posit ion 
varies according to the  poin t  group, but  in exact ly  
the same way as in the  usual two-dimensional  space 
groups. The combinat ion  m - ~ m -  denotes t h a t  m and 
m-  are parallel  and separated from one another  by 
one-quarter  of the  repeat  distance in a direct ion 
perpendicular  to  the  symmet ry  lines, as in c m 
p m + g .  The set-up of the  space-group symbols of 
Table 3 has been chosen to correspond to the  diagrams 
in a paper  by  Weber  (1929), which is briefly discussed 
in the  nex t  section. Two representa t ive  reversal space 
groups are shown in Figs. 3 and 4. 

Table 3. Reversa l  space groups  i n  two d i m e n s i o n s  

I 
Number 

1 
2 
3 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2O 
21 
22 
23 
24 
25 
26 
27 
28 
29 
3O 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

41 
42 
43 
44 
45 
46 

II  I I I  
Symbol Figure 

p t -  3 }  
p 2 -  2 
p 2 t -  11 

p m -  8 
p g -  9 
p r o + t -  21 
p g + t -  22 
p m + m -  23 
p re+g-  26 
p g + m -  25 
p g + g -  24 
c m- 10 
c re+m- 27 
p r o m -  12 
p m g -  13 
p g m -  15 
p g g -  16 
p m m  28 
p g  m 29 
p g  g 30 
p m m + m -  34 
p m g + g -  37 
p g r e + m -  32 
p g g-~g- 36 

IV 
System 

p r o + g - r e + g -  38 
p m + g -  g + m -  35 
p g'4-m- g.-kra- 33 
c r a m -  14 
cm m 31 
c r e + m -  m-4-m- 39 

p 4-  48 
p 4 t -  54 
p 4 - m m -  56 
p 4 - m - m  51 
p 4 m  m 52 
p 4 g  m 58 
p 4 - g m -  57 
p 4 - g - m  55 
p 4 m + g -  m + m -  60 
p 4 g + m -  r e + m -  59 

p 3 m-  1 44 
p 3 1 m -  45 
p 6- 41 
p 6 - m m -  47 
p 6- m- m 46 
p 6 m  m 63 

Oblique 

Rectangular 

Square 

Hexagonal 

Column III  gives in each case the corresponding figure in 
the paper of Weber (1929). In Fig. 37 of that paper the x 
and y axes should be interchanged, while in Figs. 56 and 57 
new axes should be chosen with x running from top left to 
bottom right. In some eases, for the sake of clearness, a longer 
symbol than is absolutely necessary has been given in the 
above table: for example, )7o. 30 could be written as cm m Z-m-, 
and No. 37 as p 4-g. 

4. R e l a t i o n  to  o t h e r  w o r k  

A general izat ion of plane-group theory  made by  
Alexander  & Her rmann  (1928, 1929) and by  Weber  
(1929) consists essentially in regarding the  two sides 
of the  plane as distinct.  Wi th  this  dist inction,  the  
number  of plane groups is increased from 17 to 80. 
Of these, 46 are ident ical  with reversal  space groups 

in two dimensions, in the  sense t h a t  the  upper  side of 
a plane m a y  be equated with positive, and the  lower 
side with negative.  Of the  remaining 34, 17 are 
ident ical  with the  usual 17 two-dimensional  space 
groups, while the  final 17 have no counterpar t  among 
reversal space groups in two dimensions, since in them 
upper and lower sides of the  plane axe occupied 
s imultaneously  at  the  same point ,  and this  would 
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Fig. 3. The reversal space group c r e + m - m + m - .  Note that m and g-, as well as g and m-, occur superimposed. 

@ @ 

o ~ ° - os,-~e ° 

,~" "<> ",~ 

0 @ 

. ," '""" :O 

0 ~ o  
@ 

Fig. 4. The reversal space group p 4 - g  m-. 

correspond to a funct ion which was s imultaneously 
positive and negative,  i.e. zero everywhere  in all 
17 instances. 

Prof. Lonsdale has pointed out to me tha t  the  
reversal  space groups discussed in this  paper  could be 
described by  means  of the  symbols for the  usual  
230 space groups. For  example ~0 m-------P 2 where 
x = 0  or z = 0 ;  p r o - g - - - - - P 2 2 2  z where x-=--0 or 
y = 0, etc. This symbolism would give a correct 
formal  representat ion,  but  only by  invoking a third 
dimension to describe wha t  are essentially two- 

dimensional  pa t t e rns ;  and  would give no indication 
of the  relat ion between reversal  space groups in two 
dimensions and  those in three dimensions, which re- 
main  to be invest igated and which cannot  be de- 
scribed wi thout  the  use of reversal  s y m m e t r y  operators.  

In  one dimension, if we denote the  usual  space 
groups by  p 1, and p m, the  reversal  space groups 
are p t - ,  p r o -  and ~b m - t - .  

I should like to conclude by  thank ing  Prof.  K.  Lons- 
dale and  Dr  N . F . M .  H e n r y  for some very  con- 
s truct ive criticism of this  paper.  
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